ارائه مدلی جهت پیش‌بینی قیمت سهام با استفاده از روش‌های فرا ابتکاری و شبکه‌های عصبی

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

به دلیل پیچیدگی بازار بورس و حجم بالای اطلاعات مورد پردازش، اغلب استفاده از یک سیستم ساده برای پیش‌بینی نتایج خوبی به همراه ندارد. به همین دلیل محققان با ارائه‌ی مدل‌های ترکیبی سعی در ارائه‌ی سیستمی با پیچیدگی کمتر و کارایی و دقت بیشتر کرده‌اند. امروزه از الگوهای مختلفی مانند: تکنیک­های آماری (تحلیل تشخیصی، لوجیت و آنالیز فاکتوری) و تکنیک­های هوش مصنوعی (شبکه­های عصبی، درخت تصمیم­گیری، استدلال مبتنی بر موضوع، الگوریتم ژنتیک، مجموعه­های سخت، ماشین بردار تکیه گاه و منطق فازی) و یا ترکیبی از این دو تکنیک برای پیش­بینی قیمت سهام استفاده می­شود. در اکثر مدل‌های پیش‌بینی کننده، سیستم فقط با استفاده از اطلاعات یک شاخص به پیش‌بینی می‌پردازد، اما در مدل پیشنهادی در این پژوهش یک سیستم دو سطحی از شبکه‌های عصبی پرسپترون چندلایه پیشنهاد شده و از چندین شاخص برای پیش‌بینی استفاده می‌شود. در این پژوهش داده‌های شاخص قیمت بورس اوراق بهادار تهران از 1391 تا 1395 برای این منظور در نظر گرفته شده است. همچنین برای آموزش بهتر شبکه‌ی عصبی و در نتیجه بهبود نتایج بدست آمده، از الگوریتم بهینه‌سازی ملخ برای انتخاب بهترین نمونه‌ها استفاده شده است. نتایج بدست آمده نشان می‌دهد که مدل پیشنهادی توانسته با خطای پیش‌بینی پایین‌تری نسبت به دیگر مدل‌ها عمل کند

کلیدواژه‌ها


عنوان مقاله [English]

Providing a model for predicting stock prices using ultra-innovative neural networks

نویسندگان [English]

  • Seyyed Hosein Miralavi
  • zahra pourzamani
Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Due to the complexity of the stock market and the high volume of processable information, often using a simple system to predict cannot release appropriate results. Therefore, researchers have been trying to provide a system with less complexity and more efficiency and accuracy using hybrid models. nowadays various patters are used including statistical technique (discriminate analysis , logistic , analysis factors) and artificial intelligent techniques ( neural networks(NN) , decision trees , case based reasoning , genetic algorithm , rough sets , support vector machine , fuzzy logic ) and the combination of these two technique for predicating stock prices. For most predictive models, the system uses only one indicator to predict, but in the proposed model in this study, a two-level system of multilayered perceptron neural networks is presented which uses several indicators to predict. To do this, required information of Tehran Stock Exchange price indicators, for fiscal years 2012 - 2017 was collected. We also used the Grasshopper Optimization Algorithm to select the best samples for better nerve network training and thus to improve the results.  The results show that the proposed model can operate with lower prediction error than other models.

کلیدواژه‌ها [English]

  • Grasshopper Optimizations Evolutionary Algorithm
  • Multilayer Perceptron Neural Network
  • Prediction
  • Time series